Analysis of glycosylation in CDG-Ia fibroblasts by fluorophore-assisted carbohydrate electrophoresis: implications for extracellular glucose and intracellular mannose 6-phosphate.
نویسندگان
چکیده
Phosphomannomutase (PMM) deficiency causes congenital disorder of glycosylation (CDG)-Ia, a broad spectrum disorder with developmental and neurological abnormalities. PMM converts mannose 6-phosphate (M6P) to mannose-1-phosphate, a precursor of GDP-mannose used to make Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (lipid-linked oligosaccharide; LLO). LLO, in turn, is the donor substrate of oligosaccharyltransferase for protein N-linked glycosylation. Hepatically produced N-linked glycoproteins in CDG-Ia blood are hypoglycosylated. Upon labeling with [(3)H]mannose, CDG-Ia fibroblasts have been widely reported to accumulate [(3)H]LLO intermediates. Since these are thought to be poor oligosaccharyltransferase substrates, LLO intermediate accumulation has been the prevailing explanation for hypoglycosylation in patients. However, this is discordant with sporadic reports of specific glycoproteins (detected with antibodies) from CDG-Ia fibroblasts being fully glycosylated. Here, fluorophore-assisted carbohydrate electrophoresis (FACE, a nonradioactive technique) was used to analyze steady-state LLO compositions in CDG-Ia fibroblasts. FACE revealed that low glucose conditions accounted for previous observations of accumulated [(3)H]LLO intermediates. Additional FACE experiments demonstrated abundant Glc(3)Man(9)GlcNAc(2)-P-P-dolichol, without hypoglycosylation, CDG-Ia fibroblasts grown with physiological glucose. This suggested a "missing link" to explain hypoglycosylation in CDG-Ia patients. Because of the possibility of its accumulation, the effects of M6P on glycosylation were explored in vitro. Surprisingly, M6P was a specific activator for cleavage of Glc(3)Man(9)GlcNAc(2)-P-P-dolichol. This led to futile cycling the LLO pathway, exacerbated by GDP-mannose/PMM deficiency. The possibilities that M6P may accumulate in hepatocytes and that M6P-stimulated LLO cleavage may account for both hypoglycosylation and the clinical failure of dietary mannose therapy with CDG-Ia patients are discussed.
منابع مشابه
A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation
Individuals with congenital disorders of glycosylation (CDG) have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO), which serves as ...
متن کاملMicrosoft Word - Chuetal MPI-CDG RevisionFINAL.docx
Patients with Congenital Disorders of Glycosylation (CDG) have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these patients, the underlying cellular defects that contribute to CDG are not well-understood. Synthesis of the lipid-linked oligosaccharide (LLO), which serves as the su...
متن کاملHydrophobic Man-1-P derivatives correct abnormal glycosylation in Type I congenital disorder of glycosylation fibroblasts.
Patients with Type I congenital disorders of glycosylation (CDG-I) make incomplete lipid-linked oligosaccharides (LLO). These glycans are poorly transferred to proteins resulting in unoccupied glycosylation sequons. Mutations in phosphomannomutase (PMM2) cause CDG-Ia by reducing the activity of PMM, which converts mannose (Man)-6-P to Man-1-P before formation of GDP-Man. These patients have red...
متن کاملA Novel N-Tetrasaccharide in Patients with Congenital Disorders of Glycosylation, Including Asparagine-Linked Glycosylation Protein 1, Phosphomannomutase 2, and Mannose Phosphate Isomerase Deficiencies.
BACKGROUND Primary deficiencies in mannosylation of N-glycans are seen in a majority of patients with congenital disorders of glycosylation (CDG). We report the discovery of a series of novel N-glycans in sera, plasma, and cultured skin fibroblasts from patients with CDG having deficient mannosylation. METHOD We used LC-MS/MS and MALDI-TOF-MS analysis to identify and quantify a novel N-linked...
متن کاملBand 3 glycoprotein and glycophorin A from erythrocytes of children with congenital disorder of glycosylation type-Ia are underglycosylated.
Band 3 and PAS-1 (a dimer of glycophorin A) from erythrocyte membranes of three children with congenital disorder of glycosylation, type Ia (CDG-Ia), aged 1 month, 3 years and 10 years respectively, were examined by a new technique that allowed determination of carbohydrate molar composition of glycoproteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In CDG children...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 18 شماره
صفحات -
تاریخ انتشار 2005